Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 675
Filter
1.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724987

ABSTRACT

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Subject(s)
Diabetic Cardiomyopathies , Dynamins , Endothelial Cells , Mice, Inbred C57BL , Signal Transduction , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/etiology , Humans , Dynamins/metabolism , Dynamins/genetics , Male , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/enzymology , Endothelial Cells/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ferroptosis/drug effects , Disease Models, Animal , Cells, Cultured , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/enzymology , Mice , Protein Processing, Post-Translational , Coronary Circulation , Intracellular Signaling Peptides and Proteins
2.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715043

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Fibrosis , Growth Differentiation Factors , Inflammasomes , Mice, Inbred C57BL , Myocytes, Cardiac , Pyroptosis , Signal Transduction , Animals , Pyroptosis/drug effects , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Diabetes Mellitus, Experimental/metabolism , Cell Line , Inflammasomes/metabolism , Male , Growth Differentiation Factors/metabolism , Rats , Blood Glucose/metabolism , Mice , Glucose/metabolism , Glucose/toxicity , Bone Morphogenetic Proteins , PPAR alpha
3.
Stem Cell Res Ther ; 15(1): 120, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659015

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS: A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS: Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1ß) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION: Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Fibrosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , MicroRNAs , Myocardium , Umbilical Cord , Animals , Humans , Male , Mice , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Fibrosis/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardium/metabolism , Myocardium/pathology , Umbilical Cord/cytology , Umbilical Cord/metabolism
4.
Cardiovasc Diabetol ; 23(1): 139, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664790

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) poses a growing health threat, elevating heart failure risk in diabetic individuals. Understanding DCM is crucial, with fibroblasts and endothelial cells playing pivotal roles in driving myocardial fibrosis and contributing to cardiac dysfunction. Advances in Multimodal single-cell profiling, such as scRNA-seq and scATAC-seq, provide deeper insights into DCM's unique cell states and molecular landscape for targeted therapeutic interventions. METHODS: Single-cell RNA and ATAC data from 10x Multiome libraries were processed using Cell Ranger ARC v2.0.1. Gene expression and ATAC data underwent Seurat and Signac filtration. Differential gene expression and accessible chromatin regions were identified. Transcription factor activity was estimated with chromVAR, and Cis-coaccessibility networks were calculated using Cicero. Coaccessibility connections were compared to the GeneHancer database. Gene Ontology analysis, biological process scoring, cell-cell communication analysis, and gene-motif correlation was performed to reveal intricate molecular changes. Immunofluorescent staining utilized various antibodies on paraffin-embedded tissues to verify the findings. RESULTS: This study integrated scRNA-seq and scATAC-seq data obtained from hearts of WT and DCM mice, elucidating molecular changes at the single-cell level throughout the diabetic cardiomyopathy progression. Robust and accurate clustering analysis of the integrated data revealed altered cell proportions, showcasing decreased endothelial cells and macrophages, coupled with increased fibroblasts and myocardial cells in the DCM group, indicating enhanced fibrosis and endothelial damage. Chromatin accessibility analysis unveiled unique patterns in cell types, with heightened transcriptional activity in myocardial cells. Subpopulation analysis highlighted distinct changes in cardiomyocytes and fibroblasts, emphasizing pathways related to fatty acid metabolism and cardiac contraction. Fibroblast-centered communication analysis identified interactions with endothelial cells, implicating VEGF receptors. Endothelial cell subpopulations exhibited altered gene expressions, emphasizing contraction and growth-related pathways. Candidate regulators, including Tcf21, Arnt, Stat5a, and Stat5b, were identified, suggesting their pivotal roles in DCM development. Immunofluorescence staining validated marker genes of cell subpopulations, confirming PDK4, PPARγ and Tpm1 as markers for metabolic pattern-altered cardiomyocytes, activated fibroblasts and endothelial cells with compromised proliferation. CONCLUSION: Our integrated scRNA-seq and scATAC-seq analysis unveils intricate cell states and molecular alterations in diabetic cardiomyopathy. Identified cell type-specific changes, transcription factors, and marker genes offer valuable insights. The study sheds light on potential therapeutic targets for DCM.


Subject(s)
Diabetic Cardiomyopathies , Single-Cell Analysis , Transcriptome , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Animals , Gene Expression Profiling , Chromatin/metabolism , Chromatin/genetics , Mice, Inbred C57BL , Gene Regulatory Networks , Chromatin Assembly and Disassembly , Disease Models, Animal , Male , RNA-Seq , Gene Expression Regulation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology
5.
J Transl Med ; 22(1): 390, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671439

ABSTRACT

BACKGROUND: The progression of diabetic cardiomyopathy (DCM) is noticeably influenced by mitochondrial dysfunction. Variants of caveolin 3 (CAV3) play important roles in cardiovascular diseases. However, the potential roles of CAV3 in mitochondrial function in DCM and the related mechanisms have not yet been elucidated. METHODS: Cardiomyocytes were cultured under high-glucose and high-fat (HGHF) conditions in vitro, and db/db mice were employed as a diabetes model in vivo. To investigate the role of CAV3 in DCM and to elucidate the molecular mechanisms underlying its involvement in mitochondrial function, we conducted Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis and functional experiments. RESULTS: Our findings demonstrated significant downregulation of CAV3 in the cardiac tissue of db/db mice, which was found to be associated with cardiomyocyte apoptosis in DCM. Importantly, cardiac-specific overexpression of CAV3 effectively inhibited the progression of DCM, as it protected against cardiac dysfunction and cardiac remodeling associated by alleviating cardiomyocyte mitochondrial dysfunction. Furthermore, mass spectrometry analysis and immunoprecipitation assays indicated that CAV3 interacted with NDUFA10, a subunit of mitochondrial complex I. CAV3 overexpression reduced the degradation of lysosomal pathway in NDUFA10, restored the activity of mitochondrial complex I and improved mitochondrial function. Finally, our study demonstrated that CAV3 overexpression restored mitochondrial function and subsequently alleviated DCM partially through NDUFA10. CONCLUSIONS: The current study provides evidence that CAV3 expression is significantly downregulated in DCM. Upregulation of CAV3 interacts with NDUFA10, inhibits the degradation of lysosomal pathway in NDUFA10, a subunit of mitochondrial complex I, restores the activity of mitochondrial complex I, ameliorates mitochondrial dysfunction, and thereby protects against DCM. These findings indicate that targeting CAV3 may be a promising approach for the treatment of DCM.


Subject(s)
Caveolin 3 , Diabetic Cardiomyopathies , Electron Transport Complex I , Mitochondria , Myocytes, Cardiac , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Caveolin 3/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Male , Mice, Inbred C57BL , Apoptosis , Mice , Mitochondria, Heart/metabolism
6.
Biomed Pharmacother ; 174: 116589, 2024 May.
Article in English | MEDLINE | ID: mdl-38636400

ABSTRACT

Diabetic cardiomyopathy (DCM) is a common severe complication of diabetes that occurs independently of hypertension, coronary artery disease, and valvular cardiomyopathy, eventually leading to heart failure. Previous studies have reported that Tectorigenin (TEC) possesses extensive anti-inflammatory and anti-oxidative stress properties. In this present study, the impact of TEC on diabetic cardiomyopathy was examined. The model of DCM in mice was established with the combination of a high-fat diet and STZ treatment. Remarkably, TEC treatment significantly attenuated cardiac fibrosis and improved cardiac dysfunction. Concurrently, TEC was also found to mitigate hyperglycemia and hyperlipidemia in the DCM mouse. At the molecular level, TEC is involved in the activation of AMPK, both in vitro and in vivo, by enhancing its phosphorylation. This is achieved through the regulation of endothelial-mesenchymal transition via the AMPK/TGFß/Smad3 pathway. Furthermore, it was demonstrated that the level of ubiquitination of the adiponectin receptor 1 (AdipoR1) protein is associated with TEC-mediated improvement of cardiac dysfunction in DCM mice. Notably the substantial reduction of myocardial fibrosis. In conclusion, TEC improves cardiac fibrosis in DCM mice by modulating the AdipoR1/AMPK signaling pathway. These findings suggest that TEC could be an effective therapeutic agent for the treatment of diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Isoflavones , Animals , Mice , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/etiology , Diet, High-Fat/adverse effects , Epithelial-Mesenchymal Transition/drug effects , Fibrosis/drug therapy , Isoflavones/pharmacology , Isoflavones/therapeutic use , Mice, Inbred C57BL , Myocardium/pathology , Myocardium/metabolism , Receptors, Adiponectin/drug effects , Receptors, Adiponectin/metabolism , Signal Transduction/drug effects , Smad3 Protein/metabolism , Streptozocin
7.
Free Radic Biol Med ; 218: 149-165, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570171

ABSTRACT

Proper protein degradation is required for cellular protein homeostasis and organ function. Particularly, in post-mitotic cells, such as cardiomyocytes, unbalanced proteolysis due to inflammatory stimuli and oxidative stress contributes to organ dysfunction. To ensure appropriate protein turnover, eukaryotic cells exert two main degradation systems, the ubiquitin-proteasome-system and the autophagy-lysosome-pathway. It has been shown that proteasome activity affects the development of cardiac dysfunction differently, depending on the type of heart failure. Studies analyzing the inducible subtype of the proteasome, the immunoproteasome (i20S), demonstrated that the i20S plays a double role in diseased hearts. While i20S subunits are increased in cardiac hypertrophy, atrial fibrillation and partly in myocarditis, the opposite applies to diabetic cardiomyopathy and ischemia/reperfusion injury. In addition, the i20S appears to play a role in autophagy modulation depending on heart failure phenotype. This review summarizes the current literature on the i20S in different heart failure phenotypes, emphasizing the two faces of i20S in injured hearts. A selection of established i20S inhibitors is introduced and signaling pathways linking the i20S to autophagy are highlighted. Mapping the interplay of the i20S and autophagy in different types of heart failure offers potential approaches for developing treatment strategies against heart failure.


Subject(s)
Autophagy , Heart Failure , Proteasome Endopeptidase Complex , Heart Failure/pathology , Heart Failure/metabolism , Heart Failure/genetics , Heart Failure/immunology , Humans , Proteasome Endopeptidase Complex/metabolism , Animals , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Phenotype , Signal Transduction , Proteolysis , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Myocarditis/pathology , Myocarditis/metabolism , Myocarditis/immunology , Myocarditis/genetics , Cardiomegaly/pathology , Cardiomegaly/metabolism , Cardiomegaly/genetics
8.
BMC Genomics ; 25(1): 312, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532337

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) is becoming a very well-known clinical entity and leads to increased heart failure in diabetic patients. Long non-coding RNAs (LncRNAs) play an important role in the pathogenesis of DCM. In the present study, the expression profiles of lncRNAs and mRNAs were illuminated in myocardium from DCM mice, with purpose of exploring probable pathological processes of DCM involved by differentially expressed genes in order to provide a new direction for the future researches of DCM. RESULTS: The results showed that a total of 93 differentially expressed lncRNA transcripts and 881 mRNA transcripts were aberrantly expressed in db/db mice compared with the controls. The top 6 differentially expressed lncRNAs like up-regulated Hmga1b, Gm8909, Gm50252 and down-regulated Msantd4, 4933413J09Rik, Gm41414 have not yet been reported in DCM. The lncRNAs-mRNAs co-expression network analysis showed that LncRNA 2610507I01Rik, 2310015A16Rik, Gm10503, A930015D03Rik and Gm48483 were the most relevant to differentially expressed mRNAs. CONCLUSION: Our results showed that db/db DCM mice exist differentially expressed lncRNAs and mRNAs in hearts. These differentially expressed lncRNAs may be involved in the pathological process of cardiomyocyte apoptosis and fibrosis in DCM.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , RNA, Long Noncoding , Humans , Mice , Animals , RNA, Long Noncoding/genetics , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Gene Expression Profiling/methods , Myocardium/metabolism , Computational Biology , RNA, Messenger/genetics , Gene Regulatory Networks , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology
9.
Front Immunol ; 15: 1348043, 2024.
Article in English | MEDLINE | ID: mdl-38390337

ABSTRACT

Introduction: Diabetes is a debilitating disease that leads to complications like cardiac dysfunction and heart failure. In this study, we investigated the pathophysiology of diabetes-induced cardiac dysfunction in mice with dyslipidemia. We hypothesize diabetes in ApoE knockout (ApoE-/-) mice induces cardiac dysfunction by increasing inflammation and necroptosis. Methods: ApoE-/- mice were divided into experimental groups: Control, Streptozotocin (STZ), STZ + MSC-Exo (mesenchymal stem cell-derived exosomes), and STZ+MEF-Exo (Mouse embryonic fibroblast derived exosomes). At Day 42, we assessed cardiac function, collected blood and heart tissues. Heart tissue samples were analyzed for inflammation, necroptosis, signaling mechanism, hypertrophy and adverse structural remodeling using histology, immunohistochemistry, western blotting, RT-PCR, cytokine array and TF array. Results and Discussion: STZ treated ApoE-/- mice developed diabetes, with significantly (p<0.05) increased blood glucose and body weight loss. These mice developed cardiac dysfunction with significantly (p<0.05) increased left ventricular internal diameter end diastole and end systole, and decreased ejection fraction, and fractional shortening. We found significant (p<0.05) increased expression of inflammatory cytokines TNF- a, IL-6, IL-1a, IL-33 and decreased IL-10 expression. Diabetic mice also exhibited significantly (p<0.05) increased necroptosis marker expression and infiltration of inflammatory monocytes and macrophages. MSC-Exos treated mice showed recovery of diabetes associated pathologies with significantly reduced blood glucose, recovered body weight, increased IL-10 secretion and M2 polarized macrophages in the heart. These mice showed reduced TAK1-pJNK-NFKB inflammation associated expression and improved cardiac function with significantly reduced cardiac hypertrophy and fibrosis compared to diabetic mice. Treatment with MEF-Exos did not play a significant role in attenuating diabetes-induced cardiomyopathy as these treatment mice presented with cardiac dysfunction and underlying pathologies observed in STZ mice. Conclusion: Thus, we conclude that cardiac dysfunction develops in diabetic ApoE-/- mice, arising from inflammation, necroptosis, and adverse tissue remodeling, which is ameliorated by MSC-Exos, a potential therapeutic for diabetes-induced cardiomyopathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Exosomes , Heart Diseases , Animals , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Blood Glucose/metabolism , Cytokines/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/pathology , Exosomes/metabolism , Fibroblasts/pathology , Heart Diseases/metabolism , Inflammation/metabolism , Interleukin-10/metabolism , Mice, Knockout, ApoE , Necroptosis
10.
Acta Biomater ; 176: 367-378, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38244659

ABSTRACT

Early detection of myocardial fibrosis in diabetic cardiomyopathy (DCM) has significant clinical implications for diabetes management. In this study, we identified matrix metalloproteinase 2 (MMP2) as a potential biomarker for early fibrosis detection. Based on this finding, we designed a dual-targeting nanoparticle CHP-SPIO-ab MMP2 to specifically target myocardiopathy and MMP2, enabling sensitive fibrosis detection using magnetic resonance imaging (MRI). Our results demonstrate that collagen hyperplasia (early fiber formation) begins to develop in diabetic mice at 12 weeks old, with observable fibrosis occurring at 16 weeks old. Additionally, MMP2 expression significantly up-regulates around collagen starting from 12 weeks of age. T2 MRI analysis revealed significant T2% enhancement in the hearts of 12-week-old diabetic mice following administration of the CHP-SPIO-ab MMP2 probe, indicating noninvasive detection of fiber formation. Furthermore, after fibrosis treatment, a reduction in T2% signal was observed in the hearts of 16-week-old diabetic mice. These findings were supported by Sirius red and Prussian blue staining techniques. Overall, our study presents a promising strategy for early identification of myocardial fibrosis. STATEMENT OF SIGNIFICANCE: Myocardial damage typically exhibits irreversibility, underscoring the paramount importance of early fibrosis diagnosis. However, the clinical used T1 mapping for fibrosis detection still exhibits limitations in terms of sensitivity. Therefore, it is imperative to develop highly sensitive strategies for early cardiac fibrosis detection. Here, we investigated the development of myocardial fibrosis in diabetic mice, and designed a highly sensitive probe that specifically targets cardiomyopathy and high expression of MMP2 for the early diagnosis of fibrosis. The probe enables non-invasive detection of abnormalities through MRI imaging as soon as fiber deposition appear, which can be detected earlier than T1 mapping. This advancement holds great potential for clinical diagnosis of myocardial fibrosis using cardiac magnetic resonance.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ferric Compounds , Mice , Animals , Matrix Metalloproteinase 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Myocardium/metabolism , Diabetic Cardiomyopathies/diagnostic imaging , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Fibrosis , Collagen/metabolism , Early Diagnosis
11.
Biomed Pharmacother ; 171: 116007, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171238

ABSTRACT

Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM). However, the mechanisms underlying DCM-induced cardiac injury remain unclear. Recently, the role of cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) signaling and pyroptosis in DCM has been investigated. Based on our previous results, this study was designed to examine the impact of irisin, mitochondrial ubiquitin ligase (MITOL/MARCH5), and cGAS/STING signaling in DCM-induced cardiac dysfunction and the effect of gasdermin D (GSDMD)-dependent pyroptosis. High-fat diet-induced mice and H9c2 cells were used for cardiac geometry and function or pyroptosis-related biomarker assessment at the end of the experiments. Here, we show that DCM impairs cardiac function by increasing cardiac fibrosis and GSDMD-dependent pyroptosis, including the activation of MITOL and cGAS/STING signaling. Our results confirmed that the protective role of irisin and MITOL was partially offset by the activation of cGAS/STING signaling. We also demonstrated that GSDMD-dependent pyroptosis plays a pivotal role in the pathological process of DCM pathogenesis. Our results indicate that irisin treatment protects against DCM injury, mitochondrial homeostasis, and pyroptosis through MITOL upregulation.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Animals , Mice , Diabetic Cardiomyopathies/pathology , Fibronectins , Nucleotidyltransferases , Pyroptosis , Ventricular Remodeling , Rats
12.
Am J Pathol ; 194(4): 551-561, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38061627

ABSTRACT

Diabetes is a prevalent disease, primarily characterized by high blood sugar (hyperglycemia). Significantly higher rates of myocardial dysfunction have been noted in individuals with diabetes, even in those without coronary artery disease or high blood pressure (hypertension). Numerous molecular mechanisms have been identified through which diabetes contributes to the pathology of diabetic cardiomyopathy, which presents as cardiac hypertrophy and fibrosis. At the cellular level, oxidative stress and inflammation in cardiomyocytes are triggered by hyperglycemia. Although males are generally more likely to develop cardiovascular disease than females, diabetic males are less likely to develop diabetic cardiomyopathy than are diabetic females. One reason for these differences may be the higher levels of serum testosterone in males compared with females. Although testosterone appears to protect against cardiomyocyte oxidative stress and exacerbate hypertrophy, its role in inflammation and fibrosis is much less clear. Additional preclinical and clinical studies will be required to delineate testosterone's effect on the diabetic heart.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Hyperglycemia , Hypertension , Humans , Male , Female , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Testosterone/pharmacology , Sex Characteristics , Cardiomegaly , Oxidative Stress , Fibrosis , Inflammation
13.
Exp Physiol ; 109(2): 190-201, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37845840

ABSTRACT

Diabetic cardiomyopathy (DCM) is a significant cause of heart failure in patients with diabetes, and its pathogenesis is closely related to myocardial mitochondrial injury and functional disability. Studies have shown that the development of diabetic cardiomyopathy is related to disorders in mitochondrial metabolic substrates, changes in mitochondrial dynamics, an imbalance in mitochondrial Ca2+ regulation, defects in the regulation of microRNAs, and mitochondrial oxidative stress. Physical activity may play a role in resistance to the development of diabetic cardiomyopathy by improving myocardial mitochondrial biogenesis, the level of autophagy and dynamic changes in fusion and division; enhancing the ability to cope with oxidative stress; and optimising the metabolic substrates of the myocardium. This paper puts forward a new idea for further understanding the specific mitochondrial mechanism of the occurrence and development of diabetic cardiomyopathy and clarifying the role of exercise-mediated myocardial mitochondrial changes in the prevention and treatment of diabetic cardiomyopathy. This is expected to provide a new theoretical basis for exercise to reduce diabetic cardiomyopathy symptoms.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Humans , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Mitochondria, Heart/metabolism , Myocardium/metabolism , Exercise , Oxidative Stress , Diabetes Mellitus/metabolism
14.
Mil Med Res ; 10(1): 63, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072993

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid ß-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism. METHODS: A high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC-MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator. RESULTS: The expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC-MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin. CONCLUSIONS: Adipsin improves fatty acid ß-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Animals , Mice , Chromatography, Liquid , Complement Factor D/metabolism , Complement Factor D/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Fatty Acids/adverse effects , Fatty Acids/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/pharmacology , Lipids , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Tandem Mass Spectrometry
15.
Front Biosci (Landmark Ed) ; 28(9): 231, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37796683

ABSTRACT

BACKGROUND: Diabetes mellitus type 2 is a risk factor for developing heart failure and myocardial fibrosis, but there is no specific therapy for diabetic heart disease. 1-[2-(4-methoxyphenyl)]-2-[3-(4-methoxyphenyl) propoxy]ethyl-1H-imidazole (SKF96365) is regarded as an inhibitor of receptor-mediated calcium ion (Ca2+) entry. This study aimed to explore the effects of SKF96365 on diabetic myocardial fibrosis. METHODS: A type 2 diabetic rat model induced by a high-sugar and high-fat diet combined with streptozotocin was established. Thirty specific pathogen-free male Wistar rats were divided randomly into three groups: group A (the blank control group), group B (the diabetes group) and group C (the diabetes + transient receptor potential canonical channel [TRPC] blocker intervention group). Group C was given 0.74-µmol/kg SKF96365 by intraperitoneal injection, and groups A and B were given the same amount of normal saline by intraperitoneal injection. The weight and blood sugar of the rats were monitored. After 12 weeks, the weight of the whole heart and the left ventricle was measured, and the heart and the left ventricular weight ratios were calculated. Haematoxylin-eosin (HE) staining was used to observe pathological changes in the myocardial tissue and the distribution of nuclei. Masson staining was used to identify collagen and muscle fibres, and the myocardial collagen volume fraction (CVF) was calculated. Semi-quantitative reverse transcription-polymerase chain reaction was used to detect the messenger ribonucleic acid (mRNA) expression of SKF96365 target genes. A value of p < 0.05 indicated that the difference between the groups was statistically significant. RESULTS: Compared with the weight of the rats in group A, the weight of those in groups B and C decreased, while blood sugar, whole heart weight and left ventricular weight increased (p < 0.05). There was no significant difference in body weight between the rats in groups B and C (p > 0.05). The HE staining results showed that the arrangement of cardiomyocytes in groups B and C was irregular, and focal necrosis was seen in severe cases. The degree of diabetic cardiomyopathy (DCM) in group C was less severe than that in group B. Masson staining showed that the CVF increased in groups B and C, with group B > group C (p < 0.05); the mRNA expressions of TRPC3 and TRPC6 were upregulated in groups A, B and C, and the mRNA expressions of TRPC3 and TRPC6 in group C were downregulated compared with those in group B (p < 0.05). Compared with the expression levels of SKF96365 target genes (STIM1, Orai1 and Homer1) in group A, those in group B were lower, while the administration of SKF96365 in group C did not affect the expression levels of those genes. CONCLUSIONS: SKF96365 can effectively improve myocardial fibrosis in type-II diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Rats , Male , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Blood Glucose/metabolism , TRPC6 Cation Channel/metabolism , Rats, Wistar , Myocardium/metabolism , Imidazoles/pharmacology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Fibrosis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Collagen/metabolism
16.
Cell Stress Chaperones ; 28(6): 641-655, 2023 11.
Article in English | MEDLINE | ID: mdl-37405612

ABSTRACT

Diabetic cardiomyopathy describes decreased myocardial function in diabetic patients in the absence of other heart diseases such as myocardial ischemia and hypertension. Recent studies have defined numerous molecular interactions and signaling events that may account for deleterious changes in mitochondrial dynamics and functions influenced by hyperglycemic stress. A metabolic switch from glucose to fatty acid oxidation to fuel ATP synthesis, mitochondrial oxidative injury resulting from increased mitochondrial ROS production and decreased antioxidant capacity, enhanced mitochondrial fission and defective mitochondrial fusion, impaired mitophagy, and blunted mitochondrial biogenesis are major signatures of mitochondrial pathologies during diabetic cardiomyopathy. This review describes the molecular alterations underlying mitochondrial abnormalities associated with hyperglycemia and discusses their influence on cardiomyocyte viability and function. Based on basic research findings and clinical evidence, diabetic treatment standards and their impact on mitochondrial function, as well as mitochondria-targeted therapies of potential benefit for diabetic cardiomyopathy patients, are also summarized.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Diabetic Cardiomyopathies , Myocardial Ischemia , Humans , Diabetic Cardiomyopathies/therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Mitochondria/metabolism , Myocytes, Cardiac/pathology , Myocardial Ischemia/pathology , Cardiovascular Diseases/metabolism , Mitochondrial Dynamics , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology
18.
Sci Rep ; 13(1): 8741, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253814

ABSTRACT

Epidemiologic data suggest that the prevalence of hypertension in patients with diabetes mellitus is ∼1.5-2.0 times greater than in matched non-diabetic patients. This co-existent disease burden exacerbates cardiac and vascular injury, leading to structural and functional changes to the myocardium, impaired cardiac function and heart failure. Oxidative stress and persistent low-grade inflammation underlie both conditions, and are identified as major contributors to pathological cardiac remodelling. There is an urgent need for effective therapies that specifically target oxidative stress and inflammation to protect against cardiac remodelling. Animal models are a valuable tool for testing emerging therapeutics, however, there is a notable lack of appropriate animal models of co-morbid diabetes and hypertension. In this study, we describe a novel preclinical mouse model combining diabetes and hypertension to investigate cardiac and vascular pathology of co-morbid disease. Type 1 diabetes was induced in spontaneously hypertensive, 8-week old, male Schlager (BPH/2) mice via 5 consecutive, daily injections of streptozotocin (55 mg/kg in citrate buffer; i.p.). Non-diabetic mice received citrate buffer only. After 10 weeks of diabetes induction, cardiac function was assessed by echocardiography prior to post-mortem evaluation of cardiomyocyte hypertrophy, interstitial fibrosis and inflammation by histology, RT-PCR and flow cytometry. We focussed on the oxidative and inflammatory stress pathways that contribute to cardiovascular remodelling. In particular, we demonstrate that markers of inflammation (monocyte chemoattractant protein; MCP-1), oxidative stress (urinary 8-isoprostanes) and fibrosis (connective tissue growth factor; CTGF) are significantly increased, whilst diastolic dysfunction, as indicated by prolonged isovolumic relaxation time (IVRT), is elevated in this diabetic and hypertensive mouse model. In summary, this pre-clinical mouse model provides researchers with a tool to test therapeutic strategies unique to co-morbid diabetes and hypertension, thereby facilitating the emergence of novel therapeutics to combat the cardiovascular consequences of these debilitating co-morbidities.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Hypertension , Male , Mice , Animals , Ventricular Remodeling , Myocardium/metabolism , Hypertension/pathology , Disease Models, Animal , Oxidative Stress , Fibrosis , Inflammation/pathology , Morbidity , Citrates/pharmacology , Diabetic Cardiomyopathies/pathology , Diabetes Mellitus/metabolism
19.
Front Immunol ; 14: 1142512, 2023.
Article in English | MEDLINE | ID: mdl-37215098

ABSTRACT

Diabetes mellitus is a metabolic disease with a high prevalence worldwide, and cardiovascular complications are the leading cause of mortality in patients with diabetes. Diabetic cardiomyopathy (DCM), which is prone to heart failure with preserved ejection fraction, is defined as a cardiac dysfunction without conventional cardiac risk factors such as coronary heart disease and hypertension. Mitochondria are the centers of energy metabolism that are very important for maintaining the function of the heart. They are highly dynamic in response to environmental changes through mitochondrial dynamics. The disruption of mitochondrial dynamics is closely related to the occurrence and development of DCM. Mitochondrial dynamics are controlled by circadian clock and show oscillation rhythm. This rhythm enables mitochondria to respond to changing energy demands in different environments, but it is disordered in diabetes. In this review, we summarize the significant role of circadian clock-controlled mitochondrial dynamics in the etiology of DCM and hope to play a certain enlightening role in the treatment of DCM.


Subject(s)
Circadian Clocks , Diabetic Cardiomyopathies , Mitochondrial Dynamics , Humans , Mitochondria/pathology , Diabetes Mellitus , Diabetic Cardiomyopathies/pathology , Animals
20.
Elife ; 122023 04 03.
Article in English | MEDLINE | ID: mdl-37010266

ABSTRACT

Myocardial fibrosis is the characteristic pathology of diabetes-induced cardiomyopathy. Therefore, an in-depth study of cardiac heterogeneity and cell-to-cell interactions can help elucidate the pathogenesis of diabetic myocardial fibrosis and identify treatment targets for the treatment of this disease. In this study, we investigated intercellular communication drivers of myocardial fibrosis in mouse heart with high-fat-diet/streptozotocin-induced diabetes at single-cell resolution. Intercellular and protein-protein interaction networks of fibroblasts and macrophages, endothelial cells, as well as fibroblasts and epicardial cells revealed critical changes in ligand-receptor interactions such as Pdgf(s)-Pdgfra and Efemp1-Egfr, which promote the development of a profibrotic microenvironment during the progression of and confirmed that the specific inhibition of the Pdgfra axis could significantly improve diabetic myocardial fibrosis. We also identified phenotypically distinct Hrchi and Postnhi fibroblast subpopulations associated with pathological extracellular matrix remodeling, of which the Hrchi fibroblasts were found to be the most profibrogenic under diabetic conditions. Finally, we validated the role of the Itgb1 hub gene-mediated intercellular communication drivers of diabetic myocardial fibrosis in Hrchi fibroblasts, and confirmed the results through AAV9-mediated Itgb1 knockdown in the heart of diabetic mice. In summary, cardiac cell mapping provides novel insights into intercellular communication drivers involved in pathological extracellular matrix remodeling during diabetic myocardial fibrosis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mice , Animals , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Myocardium/pathology , Diabetes Mellitus, Experimental/complications , Endothelial Cells/pathology , Single-Cell Gene Expression Analysis , Cell Communication , Fibrosis , Fibroblasts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...